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Summary
Background Patients diagnosed as vegetative have periods of wakefulness, but seem to be unaware of themselves or 
their environment. Although functional MRI (fMRI) studies have shown that some of these patients are consciously 
aware, issues of expense and accessibility preclude the use of fMRI assessment in most of these individuals. We 
aimed to assess bedside detection of awareness with an electroencephalography (EEG) technique in patients in the 
vegetative state.

Methods This study was undertaken at two European centres. We recruited patients with traumatic brain injury and 
non-traumatic brain injury who met the Coma Recovery Scale-Revised defi nition of vegetative state. We developed a 
novel EEG task involving motor imagery to detect command-following—a universally accepted clinical indicator of 
awareness—in the absence of overt behaviour. Patients completed the task in which they were required to imagine 
movements of their right-hand and toes to command. We analysed the command-specifi c EEG responses of each 
patient for robust evidence of appropriate, consistent, and statistically reliable markers of motor imagery, similar to 
those noted in healthy, conscious controls.

Findings We assessed 16 patients diagnosed in the vegetative state, and 12 healthy controls. Three (19%) of 16 patients 
could repeatedly and reliably generate appropriate EEG responses to two distinct commands, despite being 
behaviourally entirely unresponsive (classifi cation accuracy 61–78%). We noted no signifi cant relation between 
patients’ clinical histories (age, time since injury, cause, and behavioural score) and their ability to follow commands. 
When separated according to cause, two (20%) of the fi ve traumatic and one (9%) of the 11 non-traumatic patients 
were able to successfully complete this task.

Interpretation Despite rigorous clinical assessment, many patients in the vegetative state are misdiagnosed. The EEG 
method that we developed is cheap, portable, widely available, and objective. It could allow the widespread use of this 
bedside technique for the rediagnosis of patients who behaviourally seem to be entirely vegetative, but who might 
have residual cognitive function and conscious awareness.

Funding Medical Research Council, James S McDonnell Foundation, Canada Excellence Research Chairs Program, 
European Commission, Fonds de la Recherche Scientifi que, Mind Science Foundation, Belgian French-Speaking 
Community Concerted Research Action, University Hospital of Liège, University of Liège.

Introduction
Up to 43% of patients diagnosed as vegetative are 
reclassifi ed as (at the least) minimally conscious when 
assessed by experienced teams.1–3 However, a further 
subset of conscious patients could exist who are 
undetected even after extensive clinical investigation 
in specialised centres. Findings from functional neuro-
imaging studies4,5 have called into question several of the 
core principles that underpin diagnosis of the vegetatative 
state; in particular, the extent to which clinicans can truly 
consider that a patient is unaware of themselves and 
their environment simply because they show no overt 
behavioural responses to external stimulation. For 
example, with functional MRI (fMRI), Owen and 
colleagues4 showed that a patient who seemed to be 
entirely vegetative was aware and able to modulate her 
blood oxygen-level dependent (BOLD) response to do 
various mental imagery tasks. With the same technique, 
Monti and colleagues5 showed that four (17%) of 
24 patients in the vegetative state were consciously aware 

and able to do these tasks reliably in the fMRI scanner. 
Moreover, one of the four patients could answer yes and 
no questions by modulating his fMRI response despite 
being unable to initiate any functional communication at 
the bedside. These fi ndings confi rm that a population of 
patients exists who meet all the behavioural criteria for 
the vegetative state, but nevertheless retain a level of 
covert awareness that cannot be detected by thorough 
behavioural assessment.

Use of fMRI in this patient group is very challenging; 
in addition to issues of cost and scanner availability, the 
physical stress incurred by patients when they are 
transferred to a suitably equipped fMRI facility is sub-
stantial. Movement artifacts often occur in imaging 
datasets from patients who are unable to remain still, 
and metal implants, including plates and pins, which are 
common in many traumatically injured populations, can 
completely rule out use of fMRI.

Electroencephalography (EEG) measures the activity 
of groups of cortical neurons from scalp electrodes, and 
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is much less expensive than MRI, both for initial cost 
and maintenance. EEG recordings are unaff ected by 
metallic implants and, perhaps more importantly, can be 
used at the bedside.6 In the EEG record, imagined 
movements (motor imagery) are shown by reductions in 
power (event-related desynchronisations [ERD]) of the μ 
(about 7–13 Hz) or β (about 13–30 Hz) frequency bands 
over the topo graphically appropriate areas of the motor 
cortex—eg, over the lateral premotor cortex for hand 
move ments, and medial premotor cortex for toe 
movements.6 In some individuals, these ERDs might be 
accompanied by increases in power (event-related 
synchronisations [ERS]) over motor areas contralateral 
to, or surrounding, the ERD.8,9 With classifi cation 
techniques, the form of motor imagery being done by a 
conscious individual can be accurately identifi ed on the 
basis of these EEG responses alone.10 We investigated 
whether these general principles could be adapted to 
reliably detect covert conscious awareness in a 
convenience sample of patients who seemed to be 
entirely vegetative on the basis of repeated and thorough 
clinical assessment by specialist teams.

Methods
Patients and controls
This study was undertaken at two European 
centres (Addenbrooke’s Hospital, Cambridge, UK, and 
University Hospital of Liège, Belgium), between July, 
2010, and June, 2011. We recruited patients with traumatic 
brain injury and non-traumatic brain injury who met the 
coma recovery scale-revised (CRS-R)11 defi nition of 
vegetative state. We recruited healthy control participants 
from the School of Social Sciences, University of Western 
Ontario, Canada.

We acquired informed assent from all patients’ 
families and medical teams. For patients tested in 
Cambridge, ethics approval was provided by the 
National Research Ethics Service (National Health 
Service, UK); for those tested in Liège, approval was 
provided by the ethics committee of the University 
Hospital and Faculty of Medicine of the University of 
Liège. We obtained informed consent from all controls 
before the study. Ethics approval was provided by the 
Psychology Research Ethics Board.

Procedures
All patients were admitted for 4–5 days as part of a 
separate protocol and were assessed with the CRS-R on 
every day. This scale was developed to diff erentiate 
between patients in the vegetative state and those who 
are minimally conscious, and includes six subscales 
addressing auditory, visual, motor, oromotor, commu ni-
cation, and arousal functions.

We separated the EEG task into two blocks comprising 
right-hand imagery and toe imagery. All patients 
completed at least four (range four to eight) blocks of 
each type of movement, dependent on their level of 

agitation at the time of assessment. All controls completed 
six blocks. Block order was pseudorandomised so no 
more than two blocks of the same imagery type were 
completed consecutively. Each block began with the 
auditory presentation of the task instructions for that 
block. For the right-hand and toe blocks, respectively, the 
instructions were: “Every time you hear a beep, try to 
imagine that you are squeezing your right-hand into a 
fi st and then relaxing it/wiggling all of the toes on both 
your feet, and then relaxing them. Concentrate on the 
way your muscles would feel if you were really performing 
this movement. Try to do this as soon as you hear each 
beep”. After 5 s, the instructions were followed by the 
binaural presentation of 15 tones (600 Hz for 60 ms) with 
an interstimulus interval of 4·5–9·5 s (the stimulus 
computer was programmed to choose the interstimulus 
interval at random on each trial, with MATLAB). Each 
block concluded with an instruction to relax. All 
participants had a short break of 1–2 min before the start 
of the next block. All controls completed a task identical 
to the patients’ motor imagery task, except that they were 
instructed by the experimenter to listen to the instruction 
and then mind-wander (ie, not to follow the commands) 
during the block. The stimulus computer was 
programmed to select the order of task completion at 
random for each healthy participant.

We recorded EEG responses from either a 129-channel 
electrode cap (Electrical Geodesics Inc, Oregon, USA;  
Cambridge, UK, and London, Onatario) or a 257-channel 
electrode cap (Liège) referenced to the vertex. To 
equalise the number of channels between patients, the 
129 channels corres ponding to those in the 129-channel 
electrode cap were selected from the 257-channel cap. 
This step ensured that the same number of EEG features 
were used for classifi cation of motor imagery, and that 
accuracies were similar between centres. We fi ltered data 
offl  ine between 1 Hz and 40 Hz, segmented into epochs 
of 5·5 s (including 1·5 s before every tone), and baseline 
corrected in 500 ms before the tone. We identifi ed bad 
channels by inspection (channel variance of about >250) 
and replaced them with interpolations of their neighbours 
(InvDist, EEGLAB12). We re-referenced all channels 
offl  ine, including the online reference, to the average of 
their four geodesically nearest neighbours with a 
laplacian operator. This method of local average 
referencing produces focal patterns of ERD and ERS.13 
We excluded trials containing large movement artifacts, 
to ensure the EEG recording consists of more purely 
brain activity and not muscle artifacts.

A median of 114 (range 60–202) trials contributed 
to each patient’s single-trial analysis. We selected the 
25 electrodes over the motor area (covering the area 
centrally from C3 to C4 [fi gure 1]) from the original 
129-channel electrodes to contribute to the single-trial 
classifi cation, because activity related to motor imagery is 
localised to this area of the scalp. A median of two 
(range zero to eight) channels from these 25 electrodes 
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were interpolated before the analyses. The median 
number of trials contributing to the controls’ analyses 
was 171 (range 154–180), with a median of one (zero to 
six) interpolated channel.

Classifi cation and statistical analyses
For each participant, a linear support vector machine14 
classifi er was trained with the fi ltered and artifact-rejected 
data to classify trials into either right-hand or toe motor 
imagery. EEG data for the 25 electrodes selected across 
the motor cortex in every trial were downsampled  to 
100 Hz. At each timepoint, we calculated log power values 
within the μ (7–13 Hz), low-β (13–19 Hz), middle-β 
(19–25 Hz), and high-β (25–30 Hz) frequency ranges. All 
the band-power values in the period between 0·5 s and 
3·5 s after the tone (action period) were then concatenated 
by channel and used to construct a single feature vector 
for each trial. This technique allowed the classifi er to be 
trained on discriminative spatiotemporal patterns in the 
EEG for the two types of motor imagery. We used 
blockwise cross-validation to identify the classifi er’s 
generalisation error for all the dataset. Specifi cally, the 
classifi er was repeatedly trained and tested by excluding 
two blocks at a time (one right-hand and one toe block), 
training on the remaining blocks, and testing the 
generated support vector machine with the excluded 
blocks. During every repetition, we normalised the 
Z scores of features in the training and test set with the 
mean and SD of the training set. This blockwise cross-
validation procedure, in addition to the pseudorandomised 
block order, ensured that task-irrelevant intrablock and 
interblock correlations in the EEG did not signifi cantly 
account for the classifi cation results.

To estimate overall accuracy for a patient or control, we 
used MATLAB’s binofi t function to concatenate and model 
as a binomial process all the binary single-trial classifi cation 
outcomes from the blockwise cross-validation procedure. 
This procedure assumed that the individual classifi cation 
outcomes were binomially distributed, and calculated the 
maximum likelihood estimate of the overall probability of 
correct classifi cation. We then converted these estimates to 
percentage accuracy scores. Finally, we used a test of 
whether the 99% and 99·9% binomial CIs for the esti-
mates included chance (50%) to ascribe a signifi cance level 
to each score. To confi rm that signifi cance could not occur 
because of overall changes in background EEG, which 
were not relevant to tasks and covaried with the 
pseudorandomised block order, we applied the described 
analyses to band-power features from a baseline period 
500 ms wide and starting 500 ms before each tone. We 
deemed the classifi cation accuracy in the action period 
after each tone to be signifi cantly greater than the 
classifi cation accuracy in this baseline period if it was 
outside the binomial CIs for the baseline accuracy. These 
comparisons ensured not only that classifi cation accuracy 
was signifi cant after each tone, but also that it was 
non-signifi cant before the tone, and then increased 

signifi cantly after it. Therefore, the classifi cation accuracy 
in the action period was generated by consistently timed 
motor imagery started after each tone.

We did all calculations in MATLAB with a combination 
of custom scripts, EEGLAB12 functions, and the g.
BSanalyze software (version 3.10.00). We used SPSS 
software (version 19) for statistical analyses of the relation 
between aspects of patients’ clinical history and their 
ability to follow command with this EEG task (linear and 
logistical regressions).

Role of the funding source
The sponsor of the study had no role in study design, 
data collection, data analysis, data interpretation, or 
writing of the report. The corresponding author had full 
access to all the data in the study and had fi nal respon-
sibility for the decision to submit for publication.

Results
We assessed 16 patients in the vegetative state (table). 
Patients with non-traumatic injuries were signifi cantly 
older than were those with traumatic brain injuries 
(p=0·02). Median age of patients with traumatic brain 
injury was 29 years (range 14–45), whereas those with 
non-traumatic brain injury had a median age of 44 years 
(30–63). Controls had a median age of 25 years 
(range 21–31), were English speakers, and reported no 
neurological disorders. Time since injury (p=0·13) and 
CRS-R score (p=0·20) did not diff er signifi cantly between 

FCz

CzC3 C4

Figure 1: Scalp locations of the 25 electrodes contributing to the 
classifi cation analyses
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the two injury groups (table). At no point during the 
4–5 days when patients were admitted as part of a separate 
protocol did any patient show behaviour inconsistent 
with a diagnosis of vegetative state. Three (19%) of 
16 patients were able to follow the commands to a 
signifi cantly detectable degree with the EEG assessment 
used (table). The classifi cation accuracies for these three 
patients ranged from 61% to 78% (mean 70%). None of 
the EEG recordings for the three patients were signifi cant 
during the baseline period (500 ms before each tone; 
mean 56%; all p>0·05). For all three patients, the 
classifi cation accuracy in the time after each tone was 
signifi cantly greater (all p<0·01) than that achieved in the 
baseline period (data not shown).

When separated according to cause, two (40%) of the 
fi ve patients (all p<0·001) and one (9%) of the 11 patients 
with non-traumatic brain injury (p<0·01) returned positive 
EEG outcomes. Classifi cation accuracies did not diff er 
signifi cantly between the traumatic and non-traumatic 
subgroups (mean 48% vs 52%; p=0·96), nor in the 
proportions of patients signifi cantly following commands 
(Fisher’s exact test; p=0·214). Nine (75%) of the 12 healthy 
controls produced EEG data that could be classifi ed 
signifi cantly above chance (all p<0·01). The accuracies for 
these nine participants ranged from 60% to 91% (mean 
68%), with the three remaining controls producing EEG 
that could be classifi ed only between 44% and 53%. During 
completion of the control task—ie, listening to the same 
imagery task as for patients, but not following commands—
no healthy control participant returned EEG responses 
that could be classifi ed signifi cant according to the 
commands (mean 51%, range 45–58%; all p>0·05).

A stepwise multiple linear regression analysis, 
including age at time of injury (months); time since 
injury (months), CRS-R score, and cause (traumatic or 
non-traumatic brain injury), did not signifi cantly 
predict classifi cation accuracy. A binary logistical 
regression analysis with the same factors as the stepwise 
analysis failed to predict positive EEG outcome 
(signifi cant or otherwise). These results show that 
prediction of a patient’s ability to follow commands in 
this EEG task is not possible on the basis of these 
aspects of their clinical history.

Discussion
Three study patients who seemed to be entirely 
vegetative on the basis of repeated specialist behavioural 
assessment were found to be aware and capable of 
substantially and consistently modulating their EEG 
responses to command. Our fi ndings show that this 
EEG method can identify covert awareness in patients 
diagnosed in the vegetative state with a similar degree 
of accuracy to other methods of detection; it is a 
considerably cheaper and more portable bedside 
technique. The clinical history of study individuals had 
no eff ect on their ability to follow command.

Standard clinical assessments of command following 
based on behavioural observation are fundamentally 
subjective. Results of fMRI studies suggest that up to 
17% (4/23) of patients diagnosed as in the vegetative 
state after behavioural assessment can follow commands 
when such commands need a change in blood-
oxygenation level dependent reponse, rather than overt 
motoric behaviour.4,5

Sex Age at 
assessment 
(years)

Interval 
postictus 
(months)

Cause 
(TBI/non-TBI)

CRS-R Number of tasks 
contributing to 
analyses

EEG classifi cation 
accuracy (%)

p value for EEG 
command following

Patient 1 Male 35 9 Anoxia 7 202 61·38% <0·01

Patient 2 Male 63 39 Anoxia 5 113 61·90% NS

Patient 3 Male 55 21 Anoxia 4 160 47·50% NS

Patient 4 Male 35 32 Anoxia 6 69 43·47% NS

Patient 5 Male 30 24 Anoxia 6 102 51·96% NS

Patient 6 Female 41 56 Anoxia 5 132 53·78% NS

Patient 7 Male 63 32 Anoxia 7 76 56·58% NS

Patient 8 Female 44 1 Anoxia 3 86 48·83% NS

Patient 9 Male 48 94 Anoxia 6 116 58·62% NS

Patient 10 Female 36 77 Stroke 3 114 39·47% NS

Patient 11 Male 62 1 Stroke 6 142 48·59% NS

Patient 12 Male 45 23 Trauma 6 146 71·23% <0·001

Patient 13 Male 29 3 Trauma 6 96 78·13% <0·001

Patient 14 Male 29 16 Trauma 6 150 40·70% NS

Patient 15 Male 14 18 Trauma 6 60 41·66% NS

Patient 16 Male 21 7 Trauma 7 98 47·95% NS

TBI=traumatic brain injury. CRS-R=coma recovery scale-revised. EEG=electroencephalogram. NS=non-signifi cant.

Table: Patient demographics and EEG classifi cation accuracies
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To fully appreciate our fi ndings, the criteria that had to 
be met before a signifi cant EEG result is produced 
should be considered. First, patients had to modulate the 
appropriate frequency bands of the EEG signal that are 
associated with motor imagery, over the same regions of 
the head where this activity is known to occur in aware 
individuals (fi gure 2). Second, for each type of imagery 
to be accurately classifi ed, this modulation had to be 
consistent across tasks of the same imagery type—
ie, with a consistent time course and frequency content—
but had to also diff er consistently between the two types 
of imagery (right-hand and toe). Finally, the classifi cation 
of the patient’s EEG data had to be signifi cant in a 
binomial test.

Could appropriate patterns of activity be elicited in these 
patients in the absence of awareness? Could they somehow 
indicate an automatic, rather than a conscious and overt, 
response to aspects of the task instructions, such as to the 
words right-hand and toes? This scenario is extremely 
unlikely and we know of no data to support such a 
conclusion with a task like the one used in our study. The 
task instructions were delivered once at the beginning of 
each block of 15 cues (short tones) that signalled the time 
to begin each imagery trial. Any automatic response to the 
previously presented verbal instruction would then have 
to abate and recur in synchrony with these cues, which 
carried no information about the task to be undertaken. 
Three-quarters of the control participants had signifi cant 
EEG outcomes when completing this motor imagery task. 
However, when these same individuals were instructed 
not to follow commands, none returned a positive 
outcome. Evidently, any automatic brain responses 
generated by participants listening to the instructions are 
not suffi  cient for signifi cant task performance; rather, an 
act of consistently timed, volitional command following is 
needed. Furthermore, in all three of the 16 patients who 
showed signifi cant EEG outcomes after commands, EEG 
activity before the commands was not classifi able, which 
provides further evidence that they were all producing 
task-appropriate EEG responses in time with the cues, as 
required by the task instructions. Therefore, successful 
completion of these EEG tasks represents a substantial 
cognitive feat, not only for patients who were presumed to 
be vegetative, but also for control participants.

To be deemed successful, each respondent must have 
consistently generated the requested mental states to 
command for a prolonged period within each trial, and 
must have done so for several trials.One patient produced 
consistently appropriate EEG responses for about 100 trials 
(table). 11 of the 12 controls produced EEG data that were 
less accurately classifi ed than this patient. Conversely, all 
patients were tested with the CRS-R for at least 4 days, and 
at no point did any patient show a behavioural sign of 
awareness (eg, visual fi xation, visual pursuit, localisation 
to pain). More importantly, none showed any evidence of a 
residual ability to respond to command. Therefore, these 
patients were not mis diagnosed in the normal sense of 

the word. Rigorous assessments by experienced teams 
showed they were all correctly diagnosed according to 
existing behavioural criteria. Clearly however, those 
criteria did not adequately identify the actual condition of 
these patients in at least 19% of cases.

What then, is the appropriate diagnosis for these patients 
who can follow command with an EEG response, but with 
no overt physical behaviour? We cannot draw strong 
conclusions about the inner worlds of these patients based 
solely on an ability to generate accurate and consistent 
EEG responses to command. However, performance of 
this complex task does make several demands on many 
cognitive functions, including sustained attention (more 

Healthy control

Patient 1

Patient 12

Patient 13

Figure 2: Modulation of the appropriate frequency bands of the EEG signal 
that are associated with motor imagery in three patients and one healthy 
control participant
Maps show the scalp distribution of the feature (timepoint × frequency band) with 
the highest absolute coeffi  cient value from one training run of the cross-validation 
procedure. Red colours show coeffi  cient values greater than zero. Blue colours show 
values less than zero. When the scalp distributions of data for the classifi cation 
procedure are plotted, the neurophysiological basis of the positive EEG outcome—
with clear foci over the hand and toe motor areas—are formally identical when 
compared between a healthy control participant and the three patients in the 
vegetative state who signifi cantly followed commands with this EEG task.
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than 90-s blocks), response selection (between the two 
imagery tasks), language comprehension (of the task 
instructions), and working memory (to remember which 
task to do for many trials within each block). All these 
functions are aspects of top-down cognitive control, which 
are usually associated with, and could characterise, normal 
conscious awareness.15 Future studies should further 
characterise the residual cognitive abilities in this subset 
of patients and how they contribute to command-
following. However, our fi ndings of succesful command-
following in patients characterised as vegetative state show 
that functional neuroimaging—and EEG specifi cally—is 
better suited for providing such a characterisation than 
are existing methods of clinical assessment.

Several reasons could explain the range of signifi cant 
classifi cation accuracies for patients and controls. First, 
brain-state classifi cation with no previous training for the 
individual has produced low classifi cation accuracies in 
healthy participants (eg, about 75% for right-hand vs feet 
imagery8), and the same would be true for any patient 
group. Second, diff erences in attention or capabilities of 
the working memory could have had a role in the variance 
of classifi cation accuracies within the patient group. 
Indeed, a patient whose diminished working memory 
leads them to forget the instructions for a particular block 
after ten tones for example, will produce EEG noise for 
the classifi er only in the remaining fi ve tones, leading to 
reduced classifi cation accuracy.

Why could three controls in our study not produce 
signifi cant EEG records? Participants who receive no 
feedback or training in imagery tasks are likely to produce 
relatively lower classifi cation accuracies compared with 
trained individuals. Furthermore, some healthy indi-
viduals might be unable to produce reliable classifi cation, 
even with feedback training10 (so-called brain–computer 

interface illiterates). The absence of a positive EEG 
outcome for three (aware) controls emphasises the 
importance of the interpretation of only positive results 
in patients, because this fi nding shows unequivocally 
that a null EEG outcome does not necessarily indicate an 
absence of awareness. Alongside behavioural assessment 
and other functional neuroimaging approaches,16 many 
testing sessions for several days with this EEG technique 
will provide each patient with an increased opportunity 
to show their covert awareness, if it exists.

The method described here could fundamentally change 
the assessment of this complex patient group because 
EEG is highly portable, inexpensive, can be done at the 
bedside, is available in most hospitals, and can be used 
with patients who have metal implants. Moreover, in the 
most compre hensive study of fMRI so far, data for nine 
(17%) of 54 patients could not be interpreted because of 
excessively noisy data from motion artifacts.5 By 
comparison, EEG is less aff ected by small motion artifacts, 
resulting in a drop-out rate of zero in our study. Our 
fi ndings show that consistent responses to command 
need not be expressed behaviourally, but can be identifi ed 
accurately on the basis of EEG responses. The success 
of this technique also paves the way for development 
of brain–computer interfaces17—or simple, reliable 
communication devices—in this patient group. Such 
devices will provide a form of external control and 
communication based on mappings of distinct mental 
states (eg, patients imagining right-hand movements to 
communicate yes, and toe movements to communicate 
no). The degrees of freedom provided by EEG could 
take this technique beyond binary responses to allow 
methods of communication that are far more functionally 
expressive, based on many forms of mental state classifi -
cation.18–20 The development of techniques for the real-time 
classifi cation of these forms of mental imagery will enable 
routine two-way communication with some of these 
patients, allowing them to share information about their 
inner worlds, experiences, and needs.
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Measurements of consciousness in the vegetative state
In The Lancet, Damian Cruse and colleagues’ study1 
examines 16 patients in the vegetative state. This disorder 
is defi ned as wakefulness without conscious awareness 
of self and environment. The investigators showed 
that three (19%) of the 16 patients could generate EEG 
responses to two commands involving motor imagery, 
although the patients were otherwise behaviourally 
unresponsive. But how can this discovery be understood?

Researchers typically accept a distinction between 
the contents and levels of consciousness.2 Contents of 
consciousness are defi ned as subjective experience—
eg, the taste of coff ee, feeling of pain, or experience of 
the colour red. In the study of levels of consciousness,2 
three distinct stages of degraded consciousness have 
been described: coma, the vegetative state, and the 
minimally conscious state. Diff erentiation between the 
stages is based on behavioural criteria. Patients in the 
vegetative state diff er from those in a coma because 
they can be aroused, yet both groups are considered 
fully unconscious. Patients in the minimally conscious 
state are believed to have fl uctuating consciousness 
and are distinguished from the vegetative state 
when an outside observer (a doctor in most cases) 
thinks the patient has a minimum understanding of 
self or the environment (eg, a voluntary attempt to 
communicate). Other patients with severe brain injury, 
who are not in the minimally conscious state, are 
typically believed to be more conscious3 than minimally 
conscious patients.

Immediate problems occur with attempts to 
operationalise these defi nitions, not least with the aim 
to develop a bedside test for consciousness. Levels of 
consciousness, in the standard scale, are defi ned as 
perceptible signs of being in contact with the outside 
world. Whereas this defi nition might make intuitive sense, 
it is not identical to subjective experience. In cognitive 
science, nearly all mental events exist with and without 
consciousness. Complex types of behaviour, response 
inhibition, task switching, instruction following, confl ict 
monitoring, and error detection have all been described 
as fully functional in the absence of reportable conscious 
experience.4 Similarly, complex aspects of perception, such 
as semantic interpretation, can occur unconsciously.5

No patient has been discovered who could follow 
instructions, yet was completely unconscious. However, 

with the scarcity of external validation methods in the 
study of consciousness, to imagine how such a patient 
could be identifi ed is diffi  cult. Yet fi ndings from some 
studies6 indicate that so-called split-brain patients 
react to commands without (reported) awareness of 
the command. From a diff erent perspective, many 
published works7 discuss the possible dissociation 
between the neural substrate of vision for action and 
vision for perception (and perceptual consciousness). 
Therefore, command following, which was used as 
an objective indicator for consciousness in Cruse and 
colleagues’ study,1 might not be an absolute measure for 
identifi cation of whether a person is conscious. Because 
three (25%) of the 12 healthy controls in this study 
could not produce signifi cant EEG records, command 
following most likely measures something diff erent 
than the presence and absence of consciousness.

Nevertheless, the new discovery by Cruse and 
colleagues is surprising and challenging. The study 
continues a line of research with other revolutionary 
fi ndings—eg, that of Owen and colleagues,8 who 
instructed a patient in the vegetative state to “imagine 
playing tennis” or “imagine visiting the rooms in your 
house”. The resulting brain activation was no diff erent 
from that of control participants. In a follow-up study,9 
this technique was applied to communicate successfully 
with fi ve of 54 patients in the vegetative state, by asking 
them to think about tennis for “yes”, and being in their 
house for “no”. With Cruse and colleagues’ study,1 these 
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fi ndings present good evidence that at least some 
patients in the vegetative state are conscious. However, 
the methods in all these experiments are indirect and 
investigate a factor other than consciousness alone.

So far, most researchers have interpreted these pub-
lished results as suggesting that many patients in the 
vegetative state are wrongly diagnosed; however, these 
studies have an even stronger consequence. The real 
underlying issue is that the levels of consciousness have 
little to do with consciousness—ie, subjective experience. 
A more plausible interpretation is that vegetative and 
minimally conscious states distinguish between diff er-
ent levels of cognitive and communicative abilities, 
which is a diff erent matter than subjective experience 
per se. A new classifi cation system is necessary if the goal 
is to understand the cognitive functioning of patients 
in the vegetative or minimally conscious states. Such a 
system should begin with a much more explicit attempt 
to use objective methods that have been correlated with 
reports of subjective experience in healthy individuals.10
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